Home » » Struktur dan Ikatan

Struktur dan Ikatan


A. Struktur Atom

Atom terdiri dari nukleus dengan muatan positif yang dikelilingi muatan negtif dari elektron pada jarak yang relatif jauh. Nukleus terdiri atas partikel subatomik yang disebut neutron, bermuatan netral, dan proton, bermuatan positif. Meskipun memiliki diameter yang sangat kecil – sekitar 10-14 hingga 10-15 meter (m) – nukleus berperan penting terhadap semua massa dari atom. Elektron memiliki massa yang dapat diabaikan dan mengelilingi nukleus pada jarak sekitar 10-10 m. Dengan demikian, diameter dari suatu atom kira-kira 2 x 10-10 m atau 200 picometers (pm).

Suatu atom dapat dijelaskan dengan nomor atom (Z) yang menggambarkan jumlah proton dalam inti atom, dan nomor massa (A) yang menggambarkan jumlah total proton dan neutron. Setiap atom dalam senyawa apapun memiliki nomor atom tetap, misalnya 1 untuk hidrogen, 6 untuk karbon, 17 untuk klorida, dan sebagainya, tetapi mereka dapat memiliki nomor massa berbeda tergantung berapa banyak neutron yang dimilikinya. Atom-atom yang memiliki nomor atom sama tetapi nomor massa berbeda disebut isotop.


B. Orbital Atom

Berdasarkan model mekanika kuantum atom, perilaku spesifik dari suatu atom dapat dijelaskan menggunakan persamaan gelombang. Persamaan tersebut pada awalnya digunkan untuk menjelaskan pergerakan gelombang pada benda cair. Penyelesaian persamaan gelombang disebut fungsi gelombang atau orbital, dilambangkan dengan huruf Yunani psi (ψ).

Ketika fungsi gelombang dikuadratkan (ψ2), orbital menjelaskan volume ruang di sekeliling inti di mana elektron paling mungkin ditemukan. Awan elektron tidak dapat dipastikan dengan jelas, tetapi kita dapat membuat batasan dengan mengatakan bahwa orbital menggambarkan tempat di mana elektron dapat ditemukan dengan probabilitas 90-95%.

Terdapat empat macam orbital yang berbeda, dilambangkan dengan orbital s, p, d, dan f. Dari keempat orbital tersebut, kita hanya akan mempelajari secara mendalam orbital s dan p, karena kedua orbital tersebut paling penting dalam kimia organik. Orbital s berbentuk sferis (bola), dengan inti berada di pusat. Orbital p berbentuk halter. Empat dari lima orbital d berbentuk daun semanggi, seperti yang tampak pada gambar 1. orbital d kelima berbentuk halter yang diperpanjang dengan bentuk donat mengelilingi pada bagian tengahnya.

Gambar 1. Bentuk-bentuk orbital atom
Orbital elektron diatur dalam sel-sel yang berbeda, didasarkan pada peningkatan ukuran dan energi. Sel yang berbeda mengandung jumlah dan macam orbital yang berbeda pula. Masing-masing orbital berisi sepasang elektron. Sel pertama hanya mengandung orbital s saja, diberi lambang 1s, artinya pada sel ini hanya terdapat 2 elektron. Sel kedua terdapat satu orbital s (2s) dan tiga orbital p (2p), sehingga ada delapan elektron yang dapat mengisi sel ini. Sel ketiga berisi satu orbital s (3s), tiga orbital p (3p), dan lima orbital d (3d), jadi total elektron ada delapan belas.




C. Konfigurasi Elektron dalam Atom

Konfigurasi elektron menggambarkan penataan energi terendah dari suatu atom. Dengan kata lain, konfigurasi elektron memperlihatkan bagaimana pengisian elektron dalam orbital. Elektron yang tersedia diisikan ke dalam orbital dengan mengikuti tiga aturan:

  1. Orbital dengan energi paling rendah diisi pertama kali (prinsip Aufbau)
  2. Hanya ada dua elektron yang dapat mengisi orbital yang sama, dan keduanya harus memiliki spin yang berlawanan (larangan Pauli).
  3. Jika ada dua atau lebih orbital pada tingkat energi yang sama, satu elektron mengisi masing masing orbital secara paralel hingga semua orbital setengah penuh (aturan Hund) 

Beberapa contoh penerapan ketiga aturan tersebut dapat dilihat pada tabel 1.


Tabel 1. Konfigurasi elektron beberapa unsur



D. Perkembangan Teori Ikatan Kimia

Pada pertengahan abad 18, ilmu kimia berkembang dengan pesat. Para ahli kimia mulai menyelidiki tentang kekuatan dalam molekul. Pada tahun 1858, August Kekule dan Archibald Couper secara terpisah mengusulkan bahwa di dalam senyawa organik, atom karbon selalu memiliki empat unit afinitas. Dengan demikian, atom karbon adalah tetravalen; selalu membentuk empat ikatan ketika berinteraksi dengan unsur lain membentuk senyawa.

Lebih dari itu, Kekule menyatakan bahwa atom karbon dapat berikatan satu dengan lainnya membentuk rantai panjang. Teori Kekule-Couper kemudian diperluas karena adamya kemungkinan suatu atom membentuk ikatan rangkap. Emil Erlenmeyer mengusulkan ikatan rangkap tiga pada ikatan karbon-karbon pada senyawa asetilen, dan Alexander Crum Brown mengusulkan ikatan karbon-karbon rangkap dua pada senyawa etilen. Pada tahun 1865, Kekule menjelaskan bahwa rantai karbon dapat membentuk double back membentuk cincin.

Meskipun Kekule dan Couper telah benar dalam menjelaskan bahwa karbon berbentuk tetravalen, kebanyakan kimiawan masih menggambarkannya dalam struktur dua dimensi hingga tahun 1874. Pada tahun tersebut, Jacobus van’t Hoff dan Joseph Le Bel menambahkan usulan mengenai penggambaran molekul tiga dimensi. Mereka mengusulkan bahwa empat ikatan pada karbon tidak terletak secara acak tetapi menduduki posisi ruang yang spesifik. Van’t Hoff kemudian menjelaskan bahwa empat atom yang berikatan dengan karbon menempati sudut-sudut bangun ruang tetrahedron, dengan atom karbon berada di pusat.

Gambar 2. Atom karbon tetrahedral yang diusulkan oleh Van’t Hoff
Perlu dicatat bahwa struktur di atas merupakan struktur tiga dimensi. Garis tebal artinya menuju ke arah pengamat atau keluar dari bidang gambar. Garis putus-putus menggambarkan arah menjauhi pengamat atau masuk bidang gambar.


E. Ikatan kimia

Mengapa atom-atom berikatan satu sama lain, dan bagaimana mekanika kuantum atom menjelaskan ikatan? Atom membentuk ikatan karena senyawa yang dihasilkan lebih stabil dibandingkan atom tunggal. Energi selalu dilepaskan ketika dibentuk suatu ikatan kimia. Jawaban pertanyaan “bagaimana” lebih sulit. Oleh karenanya, kita membutuhkan pengetahuan lebih mengenai sifat-sifat atom.

Kita telah mengetahui bahwa delapan elektron di dalam sel terluar atau elektron valensi, memiliki stabilitas seperti gas mulia; golongan 8 A dalam tabel periodik unsur, yaitu Ne (2 + 8), Ar (2 + 8 + 8), Kr (2 + 8 + 18 + 8). Oleh karena konfigurasi gas mulia paling stabil maka semua unsur memiliki tendensi untuk membentuk konfigurasi gas mulia. Sebagai contoh, logam-logam alkali pada golongan I, memiliki elektron tunggal di orbital terluarnya. Oleh karena itu, dengan melepaskan satu elektron tersebut mereka dapat membentuk konfigurasi gas mulia. Ukuran kecencerungan melepaskan elektron disebut dengan Energi Ionisasi dengan satuan kilokalori per mol (kcal/mol). Logam alkali memiliki energi ionisasi rendah, sehingga dapat dikatakan bersifat elektropositif. Atom-atom pada bagian tengah dan kanan dalam tabel periodik memiliki kecenderungan yang lemah untuk melepaskan elektron, artinya memiliki energi ionisasi yang tinggi.

Tabel 2. Energi ionisasi beberapa unsur


Unsur-unsur halogen memiliki tendensi membentuk ion negatif dengan menarik eleltron. Ukuran kecenderungan menarik elektron disebut Afinitas Elektron (satuannya juga kilokalori/mol). Unsurunsur pada sisi kanan dalam tabel periodik memiliki afinitas elelktron yang tinggi dan disebut unsur-unsur elektronegatif. Ikatan yang dapat dibentuk oleh unsur yang memiliki energi ionisasi rendah dengan unsur yang memiliki afinitas elektron tinggi disebut ikatan ionik. Contohnya adalah natrium klorida (NaCl). Di dalam molekul NaCl, ion Na+ dan Cl- berikatan melalui gaya elektrostatik. Contoh lainnya yang mirip dapat dilihat pada ikatan potassium fluorida (K+ F- ) dan litium bromida (Li+ Br-).

a                                     b

a. Kristal natrium klorida;
b. Tiap ion klorida (merah) dikelilingi oleh enam ion natrium (biru), dan tiap ion natrium dikelilingi oleh enam ion klorida  


F. Ikatan Kovalen

Unsur-unsur yang dapat dengan mudah membentuk konfigurasi gas mulia melalui penangkapan atau penarikan elektron dapat membentuk ikatan ionik. Akan tetapi bagaimana dengan ikatan unsur-unsur yang berada di bagian tengah dalam tabel periodik? Mari kita lihat ikatan dalam metana (CH4), ikatan antara C dengan H bukan ikatan ionik karena atom C sangat sulit melepas atau menerima empat elektron untuk membentuk konfigurasi gas mulia. Faktanya, atom karbon berikatan bukan melalui pemberian atau pelapasan elektron, tetapi dengan sharing elektron satu sama lain yang disebut dengan ikatan kovalen. Ikatan kovalen terbentuk dari overlap dua buah orbital yang masing-masing berisi satu elektron (setengah penuh). Ikatan kovalen diusulkan pertama kali oleh G. N. Lewis pada tahun 1916. Gabungan atom-atom netral yang berikatan kovalen disebut dengan molekul.

Cara sederhana menggambarkan ikatan kovalen dapat dilakukan dengan menggambar struktur Lewis, di mana elektronelektron pada orbital terluar digambarkan sebagai titik. Dengan demikian, atom hidrogen memiliki 1 titik, karbon memiliki 4 titik, oksigen 6 titik, dan sebagainya. Molekul stabil menghasilkan konfigurasi gas mulia pada masing-masing atomnya. Contohnya adalah sebagai berikut:

Gambar 3. Pembentukan ikatan kovalen
Model penggambaran lain adalah menggunakan struktur Kekule, di mana ikatan digambarkan sebagai sebuah garis. Dengan demikian dalam sebuah ikatan (garis) terdapat sepasang elektron. Pada struktur Kekule, pasangan elektron bebas pada kulit terluar dapat diabaikan.

Tabel 3. Struktur Lewis dan Kekule beberapa molekul sederhana

Dari pembahasan di atas, dabat ditarik kesimpulan sebagai berkut:

  1. Ikatan ion dihasilkan dari perpindahan elektron dari satu atom ke atom lain.
  2. Ikatan kovalen dihasilkan dari pemakaian bersama-sama sepasang eletron oleh dua atom. 
  3. Atom memindahkan atau membuat pasangan elektron untuk mencapai konfigurasi gas mulia. Konfigurasi ini biasanya adalah delapan elekron dalam kulit terluar, sesuai dengan konfigurasi dari neon dan argon. Teri ini disebut aturan oktet.



G. Teori Orbital Molekul

Bagaimana atom-atom membentuk ikatan kovalen untuk menghasilkan suatu molekul? Model molekul Lewis, yang menjelaskan bagaimana atom-atom berusaha melengkapi keadaan oktet melalui pemakaian bersama elektron hanya menceritakan sebagian dari sejarah.

Teori orbital molekul mengkombinasikan kecenderungan atom untuk mencapai keadaan oktet dengan sifat-sifat geombangnya, menempatkan elektron-elektron pada suatu tempat yang disebut orbital. Menurut teori orbital molekul, ikatan kovalen dibentuk dari kombinasi orbital-orbital atom membentuk orbital molekuler; yaitu orbital yang dimiliki oleh molekul secara keseluruhan. Seperti orbital atom, yang menjelaskan volume ruang di sekeliling inti atom di mana elektron mungkin ditemukan, orbital molekuler menjelaskan volume ruang di sekeliling molekul di mana elektron mungkin ditemukan. Orbital molekuler juga memiliki bentuk ukuran dan energi yang spesifik.

Mari kita lihat pada contoh pertama kita dalam molekul hidrogen (H2). Orbital 1s dari satu atom hidrogen mendekati orbital 1s dari atom hidrogen kedua, kemudian keduanya melakukan overlap orbital. Ikatan kovalen terbentuk ketika dua orbital s mengalami overlap, disebut dengan ikatan sigma (σ). Ikatan sigma berbentuk silindris simetris , elektron dalam ikatan ini terdistribusi secara simetris/ berada di tengah antara dua atom yang berikatan.



1. Atom Karbon

a. Hibridisasi sp3

Atom karbon memiliki dua orbital (2s dan 2p) untuk membentuk ikatan, artinya jika bereaksi dengan hidrogen maka akan terbentuk dua ikatan C-H. Faktanya, atom karbon membentuk empat ikatan C-H dan menghasilkan molekul metana dengan bentuk bangun ruang tetrahedron. Linus Pauling (1931) menjelaskan secara matematis bagaimana orbital s dan tiga orbital p berkombinasi atau terhibridisasi membentuk empat orbital atom yang ekuivalen dengan bentuk tetrahedral. Orbital yang berbentuk tetrahedral disebut dengan hibridisasi sp3. Angka tiga menyatakan berapa banyak tipe orbital atom yang berkombinasi, bukan menyatakan jumlah elektron yang mengisi orbital. Atom karbon memiliki konfigurasi ground-state 1s2 2s2 2px1 2py1. pada kulit terluar terdapat dua elektron dalam orbital 2s, dan dua elektron tak perpasangan dalam orbital 2p:

Gambar 4. Konfigurasi elektronik ground-state atom karbon

Dari konfigurasi di atas, maka atom karbon hanya dapat membentuk dua ikatan, contohnya CH2. Pada kenyataannya, molekul CH2 sangat jarang ditemukan dan lebih banyak terbentuk molekul CH4. Dari hasil eksperimen, diperoleh data bahwa kekuatan ikatan CH sebesar 100 kkal/mol. Dengan demikian, energi untuk membentuk ikatan C-H dalam CH2 sebesar 200 kkal/mol.

Alternatifnya adalah, satu elektron pada orbital 2s dipromosikan ke orbital 2pz. Konfigurasi baru ini memiliki satu elektron yang berada pada tingkat energi yang lebih tinggi dari ground-state. Energi yang dibutuhkan untuk mempromosikan elektron tersebut sebesar 96 kkal/mol.

Gambar 5. Konfigurasi elektron atom karbon yang mengalami eksitasi

Pada posisi tereksitasi, karbon memiliki empat elektron tak berpasangan dan dapat membentuk empat ikatan dengan hidrogen. Meskipun membutuhkan energi sebesar 96 kkal/mol untuk mengeksitasi satu elektronnya terlebih dahulu, ikatan yang terbentuk dengan H (pada CH4) jauh lebih stabil dibandingkan ikatan C-H pada molekul CH2.

Ikatan C-H pada metana memiliki kekuatan ikatan 104 kkal/mol dengan panjang ikatan 1.10 A. sudut ikatan H-C-H sebesar 109.50.

Etana, C2H6, merupakan contoh paling sederhana dari molekul yang mengandung ikatan karbon-karbon.

Gambar 6. Struktur Lewis dan Kekule dari etana

Ikatan karbon-karbon dalam etana memiliki panjang ikatan 1.54 A dan kekuatan ikatn 88 kkal/mol. Untuk ikatan C-H memiliki karakteristik yang sama dengan metana.

Gambar 7. Struktur Etana

b. Hibridisasi sp2; Orbital dan Struktur Etilen

Ketika kita membentuk orbital hibridisasi sp3 untuk menjelaskan ikatan dalam metana, pertama kali yang dilakukan adalah mempromosikan satu elektron dari orbital 2s ke excited state menghasilkan empat elektron tak berpasangan. Hibridisasi sp2 terjadi jika satu elektron tereksitasi ke orbital p. Akibatnya, atom karbon yang terhibridisasi sp2 hanya dapat membentuk tiga ikatan sigma dan satu ikatan pi. Ikatan pi terjadi sebagai akibat dari tumpang tindih elektron pada orbital 2p-2p.

Gambar 8. Konfigurasi elektron atom karbon yang terhibridisasi sp2
Dua atom karbon sp2 dapat saling membentuk ikatan yang kuat, mereka membentuk ikatan sigma melalui overlap orbital sp2-sp2. Kombinasi ikatan sigma sp2-sp2 dan ikatan pi 2p-2p menghasilkan bentuk ikatan rangkap karbon-karbon. Bentuk bangun ruang dari ikatan atom karbon yang terhibridisasi sp2 adalah trigonal planar.

Gambar 9. Karakteristik ikatan dalam etena

Gambar 10. Orbital Etana


c. Hibridisasi sp

Atom karbon memiliki kemampuan membentuk tiga macam ikatan, yaitu ikatan tunggal, rangkap dua dan rangkap tiga. Asetilena, C2H2, contoh paling sederhana dari ikatan karbon-karbon rangkap tiga. Di samping dapat berkombinasi dengan dua atau tiga orbital p, hibrida orbital 2s juga dapat berkombinasi dengan satu orbital p.

Ganbar 11. Konfigurasi elektron atom karbon yang terhibridisasi sp

Orbital sp memiliki bangun ruang linear dengan sudut ikatan HC-C sebesar 1800 yang telah terverifikasi dari hasil eksperimental. Panjang ikatan hidrogen-karbon sebesar 1.06A dan panjang ikatan karbon-karbon adalah 1.20 A.



(a) Ikatan σ C-C terbentuk karena overlap orbital sp-sp dan ikatan C-H dibentuk karena overlap orbital sp-s. (b) dua ikatan π karbonkarbon terbentuk melalui overlap orbital p yang berhadap-hadapan antara atom karbon yang satu dengan atom karbon lainnya.

Tabel 4. Karakteristik ikatan beberapa senyawa organik



2. Atom Nitrogen

Ikatan kovalen tidak hanya terbentuk dalam senyawa karbon, tetapi juga dapat dibentuk oleh atom-atrom lain. Semua ikatan kovalen yang dibentuk oleh unsur-unsur dalam tabel periodik dapat dijelaskan dengan orbital hibrida. Secara prinsip, pembentukan hibrida sama dengan pada atom karbon. Amonia, NH3, salah satu contoh molekul yang mengandung ikatan kovalen yang melibatkan atom nitrogen. Atom nitrogen memiliki konfigurasi ground-state: 1s2 2s2 2px1 2py1 2pz1, dan memungkinkan atom nitrogen berikatan dengan tiga atom hidrogen

Gambar 12. Pembentukan ikatan kovalen pada nitrogen sp3

Ketika terdapat tiga elektron tak berpasangan mengisi orbital 2p, ini memungkinkan orbital 1s dari hidrogen untuk overlap dengan orbital 2p tersebut membentuk ikatan sigma. Sudut ikatan yang terbentuk adalah 107.30, mendekati sudut tetrahedral (109.50). Nitrogen memiliki lima elektron pada kulit terluarnya. Pada hibridisasi sp3, satu orbital sp3 diisi oleh dua elektron dan tiga orbital sp3 diisi masingmasing satu elektron.

Gambar 13. Konfigurasi elektron atom nitrogen sp3

Ikatan sigma terbentuk dari overlap orbital hibrida sp3 yang tidak berpasangan tersebut dengan orbital 1s dari hidrogen menghasilkan molekul ammonia. Dengan demikian, ammonia memiliki bentuk geometri tetrahedral yang mirip dengan metana. Ikatan N-H memiliki panjang 1.01 A dan kekuatan ikatan 103 kkal/mol.

Nitrogen memiliki tiga elektron tak berpasangan pada orbital hibrid sp3, ketika satu elektron dalam orbital hibrida tersebut tereksitasi ke orbital p maka terbentuk hibrida baru, yaitu sp2. Elektron pada orbital p digunakan untuk membentuk ikatan pi. Jadi, atom nitrogen yang terhibridisasi sp2 memiliki satu ikatan pi yang digunakan untuk membentuk ikatan rangkap dua, mirip dengan molekul etena. Apabila elektron yang tereksitasi ke orbital p ada dua maka nitrogen memiliki kemampuan membentuk dua ikatan pi atau satu ikatan rangkap tiga (hibridisasi sp).

Gambar 14. Konfigurasi elektron atom nitrogen sp2 dan sp
Gambar 15. Contoh molekul dengan atom N terhibridisasi sp2 dan sp

3. Atom Oksigen

Elektron pada ground-state atom oksigen memiliki konfigurasi: 1s2 2s2 2px2 2py1 2pz1, dan oksigen merupakan atom divalen.

Gambar 16. Molekul air

Dengan melihat konfigurasi elektronnya, dapat diprediksi bahwa oksigen mampu membentuk dua ikatan sigma karena pada kulit terluarnya terdapat dua elektron tak berpasangan (2py dan 2pz).

Gambar 17.  Konfigurasi elektron oksigen sp3

Air adalah contoh senyawa yang mengandung oksigen sp3. sudut ikatan yang terbentuk sebesar 104.50. diperkirakan bahwa orbital dengan pasangan elektron bebas menekan sudut ikatan H-O-H, sehingga sudut yang terbentuk lebih kecil dari sudut ideal (109.50), seperti halnya pasangan elektron bebas dalam ammonia menekan sudut ikatan H-N-H.

Oksigen juga dapat terhibridisasi sp2, yaitu dengan mempromosikan satu elektronnya ke orbital p.

Gambar 18. Konfigurasi elektron oksigen sp2

Dalam kondisi ini, oksigen hanya memiliki satu ikatan sigma, tetapi juga memilki satu ikatan pi. Contoh molekul yang memiliki atom oksigen terhibridisasi sp2 adalah pada senyawa-senyawa karbonil.

Gambar 19. Contoh senyawa dengan atom oksigen terhibridisasi sp2

Satu contoh terakhir dari hibridisasi orbital yang sering ditemukan adalah boron trifluorida, BF3. Boron hanya memiliki tiga elektron di kulit terluarnya (1s2 2s2 2px 1), hal ini berarti bahwa boron hanya dapat membentuk paling banyak tiga ikatan. Kita dapat mempromosikan elektron pada orbital 2s ke orbital 2py, akan tetapi tidak mungkin melengkapi boron dengan elektron oktet.


Boron tidak memiliki pasangan elektron bebas, sehingga terdapat satu orbital p (2pz) yang kosong. Molekul BF3 yang terbentuk memiliki geometri planar, sehingga dapat dikatakan bahwa boron terhibridisasi sp2.




Sumber :

STEFANUS LAYLI PRASOJO, S.,Farm., Apt. KIMIA ORGANIK I JILID 1 . BUKU PEGANGAN KULIAH UNTUK MAHASISWA FARMASI.

0 comments:

PopAds.net - The Best Popunder Adnetwork

Popular Posts - Last 30 days

 

Dapatkan Hosting dengan Diskon Hingga 20%


Selesaikan misinya dan dapatkan hingga ratusan dolar per hari


Download Aplikasinya dan Dapatkan Promo Menarik


Get paid to share your links!
Support : Chemical Engineering | Himatemia Unimal 2014/2015 | Teknik Kimia
Copyright © 2018. Berkah Mencari Ilmu - All Rights Reserved
Contact us +6281288573161
Published by Mhd Haris lazuar Saragih Saragih | Linda Ratna Sari
Proudly powered by Berkah mencari Ilmu